Adsorption of Hydrogen Sulfide at low temperature

نویسنده

  • Tove Svärd
چکیده

From an ecological perspective is biogas an important source of energy. It is produced from fermentation of organic material, e.g. household waste and wastewater sludge. The composition of the gas depends on the raw material and varies between 65-85% methane, 15-35% carbon dioxide and small amounts of ammonia and hydrogen sulfide. To use the biogas it is important to purify it from hydrogen sulfide, because of the toxicity and corrosivity of hydrogen sulfide. This study aims to find an appropriate adsorbent for dry adsorption of hydrogen sulfide at the temperature of production, that is 30-60°C. The adsorbents tested are two iron oxides and one commercial adsorbent, SulfaTreat. The experiments were performed at 0, 40, 61, 81 and 100 % relative humidity. This to determine the influence of the relative humidity on the adsorption. The adsorption, for all three adsorbents, seemed to be only slightly depending on the relative humidity. The results indicates that the Fe3O4-adsorbent has the same and even somewhat better adsorption ability than the adsorbent SulfaTreat, which is on the market.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of hydrogen sulfide adsorption in metallic scaffold MOF-5 nanocomposite based on activated carbon for the use of respiratory mask cartridge

Introduction: Hydrogen sulfide is one of the most important impurities in natural gas. Due to the fact that this gas is hazardous, toxic, corrosive and volatile, therefore, the removal of hydrogen sulfide has been studied using several methods. One of the most known procedures is the adsorption process. In the present study, activated carbon and activated carbon-based composite scaffolds (MOF-5...

متن کامل

Molecular Dynamics Simulations of the Solubility of H2S and CO2 in Water

We have performed molecular dynamics simulations at constant temperature and pressure to calculate the solubility of carbon dioxide (CO2) and hydrogen sulfide (H2S) in water. The solubility of gases in water is important in several technological problems, in particular in the petroleum industry. The calculated liquid densities as function of temperature are in good agreement with experimental d...

متن کامل

A Theoretical Study of H2S and CO2 Interaction with the Single-Walled Nitrogen Doped Carbon Nanotubes

The physical adsorption of hydrogen sulfide and carbon dioxide gases on the zigzag (5,0) carbon nanotubes doped with nitrogen was investigated through the application of B3LYP/6-31G* at the level of theory on Gaussian 03 software. A variety of stable and high abundance structures of nitrogen doped carbon nanotubes were considered in order to study the interaction between the mentioned gases in ...

متن کامل

A Theoretical Study of H2S and CO2 Interaction with the Single-Walled Nitrogen Doped Carbon Nanotubes

The physical adsorption of hydrogen sulfide and carbon dioxide gases on the zigzag (5,0) carbon nanotubes doped with nitrogen was investigated through the application of B3LYP/6-31G* at the level of theory on Gaussian 03 software. A variety of stable and high abundance structures of nitrogen doped carbon nanotubes were considered in order to study the interaction between the mentioned gases in ...

متن کامل

Investigation of interaction hydrogen sulfide with (5,0) and (5,5) single-wall carbon nanotubes by density functional theory method

Herein, the interaction of hydrogen sulfide with inside and outside single-wall carbon nanotube of (5,0) and (5,5) is investigated using density functional theory at B3LYP/6-31G* level of theory in the gaseous phase by Gaussian 09. The adsorption energies, thermodynamic properties, highest occupied molecular orbital, lowest unoccupied molecular orbital, energy gaps, and partial charges of the i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006